2.5 ×2.0 mm Ultra Low Power SMD Crystal Oscillator ### ☼ Feature - Typical 2.5 x 2.0 x 0.81 mm SMD package - Singled-end Output: CMOS - Ultra Low Power Supply Voltage: 0.9V, 1.2V, 1.5V - Low Noise Typical: 0.3ps at 12kHz to 20MHz Frequency Offsets - Temperature Range: -40 to 85°C Operation - Pb-free/RoHS Compliant # Electrical Specifications | Parameter | | 0.9V | | 1.2V | | 1.5V | | | |---|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------| | | | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | Supply Voltage Variation | | V _{DD} -5% | V _{DD} +5% | V _{DD} -5% | V _{DD} +5% | V _{DD} -5% | V _{DD} +5% | V | | Frequency Range | | 1 | 50 | 1 | 50 | 1 | 50 | MHz | | Supply Current(At 15pF Load) | | - | 1.5 | - | 2 | - | 3 | mA | | Duty Cycle | | 45 | 55 | 45 | 55 | 45 | 55 | % | | Transition Time :
Rise/Fall Time | 1 MHz ≦ FO<10MHz | - | 4 | - | 3 | - | 3 | nSec | | | 10 MHz ≦ FO<20MHz | - | 3 | - | 3 | - | 3 | | | | 20 MHz ≦ FO<50MHz | - | 2 | - | 2 | - | 2 | | | Output Level | Out High | 0.9V _{DD} | | 0.9V _{DD} | | 0.9V _{DD} | | V | | | Out Low | | 0.1V _{DD} | | 0.1V _{DD} | | 0.1V _{DD} | | | Startup Time | | - | 4 | - | 4 | - | 4 | mSec | | Tri-State
(Input to Pin 1) | Enable | 0.7V _{DD} | | 0.7V _{DD} | | 0.7V _{DD} | | V | | | Disable | | 0.3V _{DD} | | 0.3V _{DD} | | 0.3V _{DD} | | | Period Jitter (Pk-Pk) | | - | 40 | - | 40 | - | 40 | pSec | | RMS Phase Jitter (integrated12KHz to 20MHz) | | - | 1 | - | 1 | - | 1 | pSec | | Phase Noise @24MHz @100KHz | | -148 | | -150 | | -150 | | dBc/Hz | | Standby Current | | - | 100 | - | 100 | - | 100 | μΑ | | Aging(@25 1st year) | | - | ±3 | - | ±3 | - | ±3 | ppm | | Storage Temp. Range | | -55 | 125 | -55 | 125 | -55 | 125 | °C | Standard frequencies are frequencies which the crystal has been designed and does not imply a stock position ## Dimension(mm) # TOP VIEW 2.50±0.20 #4 070000.7 #1 #2 SIDE VIEW 91000.7 910 |).675±0.10 | | 0.675 | | | |------------|------|-----------|---|--| | | PIN# | Function | | | | | 1 | Tri-State | 1 | | | | 2 | GND | | | | | 3 | Output | | | | | 4 | VDD | | | | | | | ı | | #### Solder Pad Layout(mm) To ensure optimal oscillator performance, place a by-pass capacitor of 0.1 μF as close to the part as possible between Vdd and GND pads. #### FREQ. STABILITY vs. TEMP. RANGE | ppm
Temp. (°C) | ±25 | ±50 | |-------------------|-----|-----| | -10 ~ +60 | 0 | 0 | | -20 ~ +70 | 0 | 0 | | -40 ~ +85 | Δ | 0 | o: Available \triangle : Conditional X: Not available Inclusive of calibration @ 25 °C, operating temperature range, input voltage variation, load variation, aging (1st year), shock, and vibration load variation ^{.+} Transition times are measured between 10% and 90% of VDD, with an output load of 15pF.